Dissection of canopy layer-specific genetic control of leaf angle in Sorghum bicolor by RNA sequencing

M. I. Natukundaa, M. B. Mantilla-Pereza,b, M. A. Grahama,c, P. Liu*, and M. G. Salas-Fernandez (2022). Dissection of canopy layer-specific genetic control of leaf angle in Sorghum bicolor by RNA sequencing, BMC Genomics, 23, 95.

Abstract

Leaf angle is an important plant architecture trait, affecting plant density, light interception efficiency, photosynthetic rate, and yield. The “smart canopy” model proposes more vertical leaves in the top plant layers and more horizontal leaves in the lower canopy, maximizing conversion efficiency and photosynthesis. Sorghum leaf arrangement is opposite to that proposed in the “smart canopy” model, indicating the need for improvement. Although leaf angle quantitative trait loci (QTL) have been previously reported, only the Dwarf3 (Dw3) auxin transporter gene, colocalizing with a major-effect QTL on chromosome 7, has been validated. Additionally, the genetic architecture of leaf angle across canopy layers remains to be elucidated. This study characterized the canopy-layer specific transcriptome of five sorghum genotypes using RNA sequencing. A set of 284 differentially expressed genes for at least one layer comparison (FDR < 0.05) co-localized with 69 leaf angle QTL and were consistently identified across genotypes. These genes are involved in transmembrane transport, hormone regulation, oxidation-reduction process, response to stimuli, lipid metabolism, and photosynthesis. The most relevant eleven candidate genes for layer-specific angle modification include those homologous to genes controlling leaf angle in rice and maize or genes associated with cell size/expansion, shape, and cell number. Considering the predicted functions of candidate genes, their potential undesirable pleiotropic effects should be further investigated across tissues and developmental stages. Future validation of proposed candidates and exploitation through genetic engineering or gene editing strategies targeted to collar cells will bring researchers closer to the realization of a “smart canopy” sorghum.

Publication
In BMC Genomics.
Date
Links