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Example RNA-Seq Data

• Li et al (2010, Nature Genetics) studied the gene expression difference
between BS and M cells in maize leaf.

M 
BS 

Gene ID Length BS M

1 1131 52 80 45 59
2 498 10 27 192 318
3 1896 2 3 0 0
4 990 177 382 7 6
5 363 1 12 12 38
· · · · · · · · · · · · · · · · · ·
G 609 102 135 88 127

• Question: Which genes are differentially
expressed (DE) across treatment groups?
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Poisson Model

• Let Xgij denote the read count mapped to treatment i (i = 1, 2),
replicate j and gene g .

• It has been assumed that Xgij ∼ Poisson(λgij) with
λgij = Sijλg exp(ρiδg ).

• Sij : normalization factor, e.g., total number of mappable reads.
• λg : the overall geometric mean expression level of gene g across both

treatments
• ρ1 = −1/2 and ρ2 = 1/2
• δg : the log fold change (log-FC) between the two treatment means

• To identify genes differentially expressed between two treatments, test
the hypothesis: Hg

0 : δg = 0 for each gene g .

• Poisson model has been shown to fit well for data with only technical
replicates.
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Negative Binomial Model

• Let Xgij denote the read count mapped to treatment i (i = 1, 2),
replicate j and gene g .

• For experiment with biological replicates, we assume that

Xgij ∼ NegativeBinomial(λgij , φg )

with
mean(Xgij) = λgij = Sijλg exp(ρiδg )

and
var(Xgij) = λgij + φgλ

2
gij

• To identify genes differentially expressed between two treatments, test
the hypothesis: Hg

0 : δg = 0 for each gene g .
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Proposed tests for RNA-seq data

• Fisher’s exact test: based on a 2 x 2 table for a given gene and all
other genes across 2 treatments.

• χ2 test: likelihood ratio test or goodness-of-fit test.

• edgeR: a test for Negative Binomial model with shrinkage estimator
of dispersion parameter, (Robinson and Smyth, 2007, 2008).

• DESeq: a test for Negative Binomial model with a shrinkage
estimator of variance, (Anders and Huber, 2010).

• baySeq: an empirical Bayes test for Negative Binomial model,
(Hardcastle and Kelly, 2010).

• More...
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Remaining Challenges

• There is no theoretical justification for the optimality of these
methods or discussions on how to search for optimal tests for
RNA-seq data.

• There is little information on how well the false discovery rate (FDR)
is controlled.

• Most existing tests are designed for testing Hg
0 : δg = 0. Sometimes,

it is interesting to test for big fold-changes, i.e.: test Hg
0 : δg ∈ ∆0

where ∆0 = {δ : |δ| ≤ c} with c = log 1.5 for example.
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Question of Interest

• Considering the huge dimension of tests, we aim to search for tests
with large average power.

• More specifically, our goal is to derive a test with maximum average
power while controlling FDR.

• In addition, we want to allow the null hypothesis to be intervals, such
as small range of fold-changes. So we test for Hg

0 : δg ∈ ∆0 where,
∆0 = {0} when testing for differential expression;
∆0 = (−∞, 0] when testing for higher expression in the second
treatment;
∆0 = {δ : |δ| ≤ c} with c = log 1.5 when testing whether
fold-changes of expressions is greater than 1.5 or not.
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Notations

• Data: Xg = {Xgij : i = 1, 2; j = 1, · · · , ni} ∈ X .

• Likelihood: f (Xg |λg , δg ) for the Poisson model.

• Hypotheses: Hg
0 : δg ∈ ∆0 v.s. Hg

1 : δg ∈ ∆1.

• Critical Function: ϕ(Xg ) so that the hypothesis Hg
0 is rejected if and

only if ϕ(Xg ) = 1.
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Maximum Average Powerful (MAP) Test

• Assuming (λg , δg ) ∼ π1(λ, δ) for δg ∈ ∆1, (λg , δg ) ∼ π0(λ, δ) for
genes with δg ∈ ∆0, and defining
π(λ, δ) = p0π0(λ, δ) + (1− p0)π1(λ, δ), where p0 is the proportion of
genes with δg ∈ ∆0, Si and Liu (2013) prove the following theorem.

Theorem

The test that maximizes the average power with FDR controlled at level α
is the test that rejects Hg

0 when

T (Xg ) =

∫
R+

∫
∆0

f (Xg |λ, δ)π(λ, δ)dδdλ∫
R+

∫
R f (Xg |λ, δ)π(λ, δ)dδdλ

≤ c

for g = 1, 2, ...,G , and the constant c is the critical value so that the
multiple testing procedure has FDR controlled at level α.

• This test is called the maximum average power (MAP) test.
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Estimation of FDR Level

• π(λ, δ) can be considered as the prior distribution for (λg , δg ), then:

T (Xg ) = P(δg ∈ ∆0|Xg )

• Estimated FDR for a test with critical function ϕ(Xg ) is:

F̂DR =

∑
g T (Xg )ϕ(Xg )∑

g ϕ(Xg )
, (1)
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Estimation of Prior Distribution π(λ, δ)

• We assume a K-component mixture Gamma-Normal (MGN)
distribution for π(λ, δ):

K∑
k=1

qkG (λ|αk , βk)N(δ|µk , σk).

• Changing the parameters {(qk , αk , βk , µk , σk) : k = 1, 2, · · · ,K}
allows ample model flexibility.

• Parameters for the mixture distribution can be estimated by EM
algorithm.

• Using the estimated π(λ, δ) results in the approximated MAP
(AMAP) test.
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MAP test for Negative Binomial model

• To avoid expensive computation, we first estimate the dispersion
parameter φg for each gene and then estimate π(λ, δ) in the same
way as for Poisson model.

• With estimated π̂(λ, δ) and φ̂g , the AMAP statistic under Negative
Binomial model is

T (Xg ) =

∫
R+

∫
∆0

f (Xg |λ, δ, φ̂g )π̂(λ, δ)dδdλ∫
R+

∫
R f (Xg |λ, δ, φ̂g )π̂(λ, δ)dδdλ

. (2)

• The FDR for the AMAP test based on the NB model can also be
estimated by equation (1).
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Simulation Study Based on NB

• Left: Hg
0 : δg = 0, Right: Hg

0 : |δg | ≤ log(1.5)
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Simulation Study Based on NB

• FDR estimation: Left: BH method, Right: AMAP method
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Simulation Study Based on data outliers
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Simulation Study Based on data with discrete fold-changes
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Motivation of the Model-based Nonparametric Bayesian
Approach

• Negative binomial distribution is very popular in modeling gene
expression, however, this distribution has no conjugate prior, thus we
use Poisson-Gamma Mixture model instead.

• Our main interest is checking hypothesis testing corresponding to fold
change between treatment means, so it is very important to decide
what prior distribution is used for the fold change for each gene. To
provide maximal flexibility, DP modelling framework is applied to the
fold change parameters.

• Mixture of a point-mass at 1 and continuous distributions is used as
the base distribution for the DP prior for the fold change parameters.
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Bayesian Nonparametrics

Basic Bayesian Framework

• yi ’s are i.i.d. random samples from an unknown distribution F

• prior F ∼ p(F )

• if F = F (θ), p(F ) parametric Bayes

• if F is a random distribution, p(F ) is nonparametric Bayes.
Nonparametric Bayesian models are used to avoid critical dependence
on parametric assumptions.

• Most common random distributions are Dirichlet Process, Polya
Trees, Bernstein Polynomials, etc.
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Our Hierarchical Model

Xgij |λgij ∼ Poisson(Sijλgij),

λg1j |αg , βg ∼ Gamma(αg , βg ),

λg2j |αg , βg , ρg ∼ Gamma(αg , βgρg )

• ρg is the fold change between the two treatment means

• Sij is a normalization factor

• The dispersion parameter for gene g is φg = 1/αg
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Our Hierarchical Model Cont.

• Priors for αg and βg ,

αg ∼ Exp(r), βg ∼ Gamma(a0, b0),

• the prior distribution for ρg is Dirichilet Process

ρg |G
iid∼ G and G ∼ DP(M, G0),

G0 ∼ p01{1} + (1− p0)Gamma(α0, β0).

• r , a0, b0 and α0, β0 are hyperparameters, set M = 1.

• The priors for αg , βg and ρg are independent.

• At present hyperparameters are assumed to be known and are not
assigned hyperpriors.
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Sampling from Posterior Distribution

Update λgij ’s , αg ’s, βg ’s

• Full Conditionals

p(λg1j |.) ∼ Gamma(Xg1j + αg , βg + S1j)

p(λg2j |.) ∼ Gamma(Xg2j + αg , βgρg + S2j)

p(βg |.) ∼ Gamma(αg (n1 + n2) + a0,
∑

λg1j + ρg
∑

λg2j + b0)

• p(αg |.) is a logConcave function so we use adaptive rejection
sampling method to obtain the posterior samples for αg .

• We use collapsed Gibbs sampling scheme for p(ρg |.) .
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Test for the Hierarchical Model and FDR Control

• Hypothesis test
Hg

0 : ρg = 1 v.s. Hg
1 : ρg 6= 1

• For each g , posterior probability P(ρg = 1|Xg ) is estimated by the
proportion of the posterior samples for ρg that equals to 1.

• Estimated FDR

F̂DR =

∑
g P(ρg = 1|Xg )ψ(Xg )∑

g ψ(Xg )
,

where ψ(Xg ) is an indicator function and ψ(Xg ) = 1 iff the null
hypothesis Hg

0 is rejected.
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Simulation Study

10 independent data sets were generated and each data set included 10000
genes with 5 replicates for each of the two treatments.

• αg and βg empirically estimated from the maize data set using edgeR
where αg = 1

φg
and βg =

µ1g

αg
.

• 50% genes ρg = 1, the other 50% genes randomly set 1250 genes of
them to be 4, 8, 0.25, 0.125.

• The normalizing factor Sij for all i and j were set to be 1.

• Xgij were simulated from Negative binomial distribution with mean
parameter

αg

βgρg
and the size parameter αg .
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Simulation Result
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Concluding Remarks

• Under empirical Bayesian framework, we develop an optimal test that
achieves MAP while controlling the FDR.

• The AMAP test performs better than other tests in simulation studies
in terms of both the average power and the FDR control.

• For the test based on negative binomial model, there is room to
improve the performance of AMAP test by better estimating the
dispersion parameter and the prior distribution for the means.

• We have built an R package, AMAP.seq, that is available from CRAN,
to implement the proposed test.

• We have applied the method to derive optimal test in other cases,
such as testing for alternative splicing events using RNA-seq data.
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Collapsed Gibbs Sampling Scheme

Update λgij ’s , αg ’s, βg ’s

• Full Conditionals

p(λg1j |.) ∼ Gamma(Yg1j + αg , βg + S1j)

p(λg2j |.) ∼ Gamma(Yg2j + αg , βgρg + S2j)

p(βg |.) ∼ Gamma(αg (n1 + n2) + a0,
∑

λg1j + ρg
∑

λg2j + b0)

• p(αg |.) is a logConcave function so we use adaptive rejection
sampling method to obtain the posterior samples for αg .
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Collapsed Gibbs Sampling Scheme

Reparameterization:

• K : number of distinct values (clusters) in the vector (ρ1, . . . , ρG )T

(assume the distinct values are ρ∗1, . . . , ρ
∗
K )

• ξ = (ξ1, . . . , ξG )T denotes the configuration indicators, defined by
ξg = k if and only if ρg = ρ∗k = ρ∗ξg .

The model could be rewritten as

Ygij |λgij ∼ Poisson(Sijλgij),

λg1j |αg , βg ∼ Gamma(αg , βg ),

λg2j |αg , βg , {ρ∗k} ∼ Gamma(αg , βgρ
∗
ξg ),

with ρ∗k
iid∼ G0, and (ξ1, ..., ξG )|M ∼ CRP(M), where CRP is Chinese

Restaurant Process.
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Collapsed Gibbs Sampling Scheme

Update configuration vector (ξ1, . . . , ξG )

• If ξ = ξl for some l 6= g :

P(ξg = ξ|ξ−g , rest) = c n−gξ Πn2
j=1p(λg2j |αg , βg , ρ

∗
ξ)

= c n−gξ Πn2
j=1

β
αg
g (ρ∗ξ)αg

Γ(αg )
λ
αg−1
g2j exp(−βgρ∗ξλg2j)

• otherwise

P(ξg 6= ξl for all l 6= g |ξ−g , rest) = c

∫
Πn2
j=1p(λg2j |αg , βg , ρ)G0(ρ)dρ
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Collapsed Gibbs Sampling Scheme

Update (ρ∗1, . . . , ρ
∗
K )

p(ρ∗k |.) ∝ C11{ρ∗k=1} + C2Gamma(ak , bk)

where

ak = n2

∑
{g :ξg=k}

αg + α0, bk = β0 +
∑

{g :ξg=k}

n2∑
j=1

βgλg2j

,

C1 = p0 exp{−(
∑

{g :ξg=k}

n2∑
j=1

βgλg2j)},

C2 = (1− p0)
βα0

0

Γ(α0)

Γ(n2
∑
{g :ξg=k} αg + α0)

(β0 +
∑
{g :ξg=k}

∑n2
j=1 βgλg2j)

n2
∑
{g :ξg =k} αg+α0
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